Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 23
Filtre
1.
researchsquare; 2023.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2844548.v1

Résumé

Introduction and objectives: The study examines the factors influencing the major choice of medical students in China, including individual preferences, social needs, role models, personal characteristics, and the impact of COVID-19. The aim is to provide insights for medical educators to help students make informed career decisions.Methods The study collected data from 11 universities with the largest medical student enrollment in China. A total of 14,016 valid questionnaires were analyzed using statistical methods.Results The study found that social needs and personal interests were the most significant factors influencing the choice of major for medical students in China. The majors with the largest number of enrollments are Obstetrics and Gynecology &Reproductive medicine, Oncology and Ophthalmology. However, there was a shortage of medical professionals in certain fields, such as emergency medicine and anesthesiology, due to medical students' preference for specialties that do not require emergency room visits or night shifts. COVID-19 also had a significant impact on the major choice of medical students in China, with students showing a greater inclination to pursue clinical medicine.Conclusions The study concludes that addressing the shortage of medical professionals in certain fields requires concerted efforts from the government, society, and educational institutions. Providing incentives and subsidies to doctors who face high work intensity and low pay, as well as offering relevant courses to stimulate students' interest in particular specialties, are some possible solutions. Furthermore, medical schools should ensure that students have sufficient personal time and space outside of their studies and provide adequate psychological support to help students manage the pressures of their demanding profession.


Sujets)
COVID-19
2.
Disease Surveillance ; 36(11):1196-1202, 2021.
Article Dans Chinois | CAB Abstracts | ID: covidwho-1726085

Résumé

Objective: To establish a rapid, high-throughput detection assay of serum peptidome profiling for the diagnosis of SARS-CoV-2 infection based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS).

3.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.02.17.480751

Résumé

The ongoing evolution of SARS-CoV-2 has resulted in the emergence of Omicron, which displays striking immune escape potential. Many of its mutations localize to the spike protein ACE2 receptor-binding domain, annulling the neutralizing activity of most therapeutic monoclonal antibodies. Here we describe a receptor-blocking human monoclonal antibody, 87G7, that retains ultrapotent neutralization against SARS-CoV-2 variants including the Alpha, Beta, Gamma, Delta and Omicron (BA.1/BA.2) Variants-of-Concern (VOCs). Structural analysis reveals that 87G7 targets a patch of hydrophobic residues in the ACE2-binding site that are highly conserved in SARS-CoV-2 variants, explaining its broad neutralization capacity. 87G7 protects mice and/or hamsters against challenge with all current SARS-CoV-2 VOCs. Our findings may aid the development of sustainable antibody-based strategies against COVID-19 that are more resilient to SARS-CoV-2 antigenic diversity.


Sujets)
Syndrome respiratoire aigu sévère , COVID-19
4.
The FASEB Journal ; 35(S1), 2021.
Article Dans Anglais | Wiley | ID: covidwho-1234079

Résumé

Many anatomy curricula rely on access to gross anatomy labs so that students can engage in experiential learning with donated human bodies. Without access to an anatomy lab, learning is limited to study with 2D print or online materials and 3D models ? both physical and virtual. When the restrictions due to the Covid19 pandemic were put into place and it became clear that learning would not occur on campus and in our labs, we wanted to ensure that the students still had access to 3-dimensional learning from prosections. We built on our experience in 3D photogrammetry and 3D scanning and integrated these specimens into a custom-built 3D virtual anatomy lab environment. The aim of the design was to create a sense of space and professionalism in the virtual experience. The VanVR application was created using Unity Engine and WebGL with 3D scanning/photogrammetry, and programmed for use on desktop browsers to increase accessibility. The goal of this application is not only to show 3D specimens, but also create an anatomy one-stop teaching and study tool that includes related reference material for each specimen, such labelled images, videos, web modules, etc. Within this virtual space, students can rotate, zoom and compare specimens, which would be difficult to do during an in-person anatomy class. The VanVR app has been the main anatomy teaching tool at the University of British Columbia during the pandemic lockdown. Once in-person teaching resumes, this app will be available as a reference tool for study and review. Feedback from the students about their learning experience has been positive and the VanVR app proved to be a good approach to anatomy education for remote and online learning.

5.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.10.31.363044

Résumé

Heterogeneous immunoassays such as ELISA have become indispensable in modern bioanalysis, yet translation into easy-to-use point-of-care assays is hindered by their dependence on external calibration and multiple washing and incubation steps. Here, we introduce RAPPID (Ratiometric Plug-and-Play Immunodiagnostics), a "mix-and-measure" homogeneous immunoassay platform that combines highly specific antibody-based detection with a ratiometric bioluminescent readout that can be detected using a basic digital camera. The concept entails analyte-induced complementation of split NanoLuc luciferase fragments, photoconjugated to an antibody sandwich pair via protein G adapters. We also introduce the use of a calibrator luciferase that provides a robust ratiometric signal, allowing direct in-sample calibration and quantitative measurements in complex media such as blood plasma. We developed RAPPID sensors that allow low-picomolar detection of several protein biomarkers, anti-drug antibodies, therapeutic antibodies, and both SARS-CoV-2 spike protein and anti-SARS-CoV-2 antibodies. RAPPID combines ratiometric bioluminescent detection with antibody-based target recognition into an easy-to-implement standardized workflow, and therefore represents an attractive, fast, and low-cost alternative to traditional immunoassays, both in an academic setting and in clinical laboratories for point-of-care applications.


Sujets)
Syndrome respiratoire aigu sévère
6.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.10.20.346916

Résumé

The coronavirus spike glycoprotein, located on the virion surface, is the key mediator of cell entry. As such, it is an attractive target for the development of protective antibodies and vaccines. Here we describe two human monoclonal antibodies, 1.6C7 and 28D9, that display a remarkable cross-reactivity against distinct species from three Betacoronavirus subgenera, capable of binding the spike proteins of SARS-CoV and SARS-CoV-2, MERS-CoV and the endemic human coronavirus HCoV-OC43. Both antibodies, derived from immunized transgenic mice carrying a human immunoglobulin repertoire, blocked MERS-CoV infection in cells, whereas 28D9 also showed weak cross-neutralizing potential against HCoV-OC43, SARS-CoV and SARS-CoV-2 in a neutralization-sensitive virus pseudotyping system, but not against authentic virus. Both cross-reactive monoclonal antibodies were found to target the stem helix in the spike protein S2 fusion subunit which, in the prefusion conformation of trimeric spike, forms a surface exposed membrane-proximal helical bundle, that is antibody-accessible. We demonstrate that administration of these antibodies in mice protects from a lethal MERS-CoV challenge in both prophylactic and/or therapeutic models. Collectively, these antibodies delineate a conserved, immunogenic and vulnerabe site on the spike protein which spurs the development of broad-range diagnostic, preventive and therapeutic measures against coronaviruses.


Sujets)
Infections à coronavirus , Syndrome respiratoire aigu sévère
7.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.09.30.318261

Résumé

SARS-CoV-2 has caused a global outbreak of severe respiratory disease (COVID-19), leading to an unprecedented public health crisis. To date, there has been over thirty-three million diagnosed infections, and over one million deaths. No vaccine or targeted therapeutics are currently available. We previously identified a human monoclonal antibody, 47D11, capable of cross-neutralising SARS-CoV-2 and the related 2002/2003 SARS-CoV in vitro, and preventing SARS-CoV-2 induced pneumonia in a hamster model. Here we present the structural basis of its neutralization mechanism. We describe cryo-EM structures of trimeric SARS-CoV and SARS-CoV-2 spike ectodomains in complex with the 47D11 Fab. These data reveal that 47D11 binds specifically to the closed conformation of the receptor binding domain, distal to the ACE2 binding site. The CDRL3 stabilises the N343 glycan in an upright conformation, exposing a conserved and mutationally constrained hydrophobic pocket, into which the CDRH3 loop inserts two aromatic residues. Interestingly, 47D11 preferentially selects for the partially open conformation of the SARS-CoV-2 spike, suggesting that it could be used effectively in combination with other antibodies that target the exposed receptor-binding motif. Taken together, these results expose a cryptic site of vulnerability on the SARS-CoV-2 RBD and provide a structural roadmap for the development of 47D11 as a prophylactic or post-exposure therapy for COVID-19.


Sujets)
COVID-19
8.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.08.25.256339

Résumé

Globally accessible preventive and therapeutic molecules against SARS-CoV-2 are urgently needed. DARPin molecules are an emerging class of novel therapeutics based on naturally occurring repeat proteins ([~]15 kDa in size) and can be rapidly produced in bacteria in large quantities. Here, we report the identification of 380 DARPin molecules specifically targeting the SARS-CoV-2 spike protein selected from a naive library of 1012 DARPin molecules. Using extensive biophysical and biochemical characterization, (pseudo)virus neutralization assays and cryo-EM analysis, 11 mono-DARPin molecules targeting either the receptor binding domain (RBD), the S1 N-terminal-domain (NTD) or the S2 domain of the SARS-CoV-2 spike protein were chosen. Based on these 11 mono-DARPin molecules, 31 anti-SARS-CoV-2 multi-DARPin molecules were constructed which can broadly be grouped into 2 types; multi-paratopic RBD-neutralizing DARPin molecules and multi-mode DARPin molecules targeting simultaneously RBD, NTD and the S2 domain. Each of these multi-DARPin molecules acts by binding with 3 DARPin modules to the SARS-CoV-2 spike protein, leading to potent inhibition of SARS-CoV-2 infection down to 1 ng/ml (12 pM) and potentially providing protection against viral escape mutations. Additionally, 2 DARPin modules binding serum albumin, conferring an expected half-life of about 3 weeks in humans, were included in the multi-DARPin molecules. The protective efficacy of one multi-DARPin molecule was studied in a Golden Syrian hamster SARS-CoV-2 infection model, resulting in a significant reduction in viral load and pathogenesis. In conclusion, the multi-DARPin molecules reported here display very high antiviral potency, high-production yield, and a long systemic half-life, and thereby have the potential for single-dose use for prevention and treatment of COVID-19.


Sujets)
COVID-19
9.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.08.25.265074

Résumé

We identify a mutation in the N gene of SARS-CoV-2 that adversely affects annealing of a commonly used RT-PCR primer; epidemiologic evidence suggests the virus retains pathogenicity and competence for spread. This reinforces the importance of using multiple targets, preferably in at least 2 genes, for robust SARS-CoV-2 detection. Article Summary LineA SARS-CoV-2 variant that occurs worldwide and has spread in California significantly affects diagnostic sensitivity of an N gene assay, highlighting the need to employ multiple viral targets for detection.

10.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.08.25.267500

Résumé

Early in the current pandemic, the D614G mutation arose in the Spike protein of SARS-CoV-2 and quickly became the dominant variant globally. Mounting evidence suggests D614G enhances viral entry. Here we use a direct competition assay with single-cycle viruses to show that D614G outcompetes the wildtype. We developed a cell line with inducible ACE2 expression to confirm that D614G more efficiently enters cells with ACE2 levels spanning the different primary cells targeted by SARS-CoV-2. Using a new assay for crosslinking and directly extracting Spike trimers from the pseudovirus surface, we found an increase in trimerization efficiency and viral incorporation of D614G protomers. Our findings suggest that D614G increases infection of cells expressing a wide range of ACE2, and informs the mechanism underlying enhanced entry. The tools developed here can be broadly applied to study other Spike variants and SARS-CoV-2 entry, to inform functional studies of viral evolution and vaccine development.

11.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.08.26.268854

Résumé

SARS-CoV-2 has resulted in a global pandemic and shutdown economies around the world. Sequence analysis indicates that the novel coronavirus (CoV) has an insertion of a furin cleavage site (PRRAR) in its spike protein. Absent in other group 2B CoVs, the insertion may be a key factor in the replication and virulence of SARS-CoV-2. To explore this question, we generated a SARS-CoV-2 mutant lacking the furin cleavage site ({Delta}PRRA) in the spike protein. This mutant virus replicated with faster kinetics and improved fitness in Vero E6 cells. The mutant virus also had reduced spike protein processing as compared to wild-type SARS-CoV-2. In contrast, the {Delta}PRRA had reduced replication in Calu3 cells, a human respiratory cell line, and had attenuated disease in a hamster pathogenesis model. Despite the reduced disease, the {Delta}PRRA mutant offered robust protection from SARS-CoV-2 rechallenge. Importantly, plaque reduction neutralization tests (PRNT50) with COVID-19 patient sera and monoclonal antibodies against the receptor-binding domain found a shift, with the mutant virus resulting in consistently reduced PRNT50 titers. Together, these results demonstrate a critical role for the furin cleavage site insertion in SARS-CoV-2 replication and pathogenesis. In addition, these findings illustrate the importance of this insertion in evaluating neutralization and other downstream SARS-CoV-2 assays. ImportanceAs COVID-19 has impacted the world, understanding how SARS-CoV-2 replicates and causes virulence offers potential pathways to disrupt its disease. By removing the furin cleavage site, we demonstrate the importance of this insertion to SARS-CoV-2 replication and pathogenesis. In addition, the findings with Vero cells indicate the likelihood of cell culture adaptations in virus stocks that can influence reagent generation and interpretation of a wide range of data including neutralization and drug efficacy. Overall, our work highlights the importance of this key motif in SARS-CoV-2 infection and pathogenesis. Article SummaryA deletion of the furin cleavage site in SARS-CoV-2 amplifies replication in Vero cells, but attenuates replication in respiratory cells and pathogenesis in vivo. Loss of the furin site also reduces susceptibility to neutralization in vitro.


Sujets)
Crises épileptiques , COVID-19
12.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.08.26.267724

Résumé

There is growing evidence pointing to the protective role of T cells against COVID-19. Vaccines eliciting targeted T cell responses have the potential to provide robust, long-lasting immunity. However, their design requires knowledge of the SARS-CoV-2-specific epitopes that can elicit a T cell response and confer protection across a wide population. Here, we provide a unified description of emerging data of SARS-CoV-2 T cell epitopes compiled from results of 8 independent studies of convalescent COVID-19 patients. We describe features of these epitopes relevant for vaccine design, while indicating knowledge gaps that can, in part, be augmented using prior immunological data from SARS-CoV. The landscape of SARS-CoV-2 T cell epitopes that we describe can help guide SARS-CoV-2 vaccine development as well as future immunological studies. A web-based platform has also been developed to complement these efforts.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère
13.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.08.26.266304

Résumé

Coronaviruses (CoVs) are important human pathogens for which no specific treatment is available. Here, we provide evidence that pharmacological reprogramming of ER stress pathways can be exploited to suppress CoV replication. We found that the ER stress inducer thapsigargin efficiently inhibits coronavirus (HCoV-229E, MERS-CoV, SARS-CoV-2) replication in different cell types, (partially) restores the virus-induced translational shut-down, and counteracts the CoV-mediated downregulation of IRE1 and the ER chaperone BiP. Proteome-wide data sets revealed specific pathways, protein networks and components that likely mediate the thapsigargin-induced antiviral state, including HERPUD1, an essential factor of ER quality control, and ER-associated protein degradation complexes. The data show that thapsigargin hits a central mechanism required for CoV replication, suggesting that thapsigargin (or derivatives thereof) may be developed into broad-spectrum anti-CoV drugs. One Sentence Summary / Running titleSuppression of coronavirus replication through thapsigargin-regulated ER stress, ERQC / ERAD and metabolic pathways

14.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.08.25.267658

Résumé

Corona Virus Disease-2019 (COVID-19) warrants comprehensive investigations of publicly available Severe Acute Respiratory Syndrome-CoronaVirus-2 (SARS-CoV-2) genomes to gain new insight about their epidemiology, mutations and pathogenesis. Nearly 0.4 million mutations were identified so far in [~]60,000 SARS-CoV-2 genomic sequences. In this study, we compared 207 of SARS-CoV-2 genomes reported from different parts of Bangladesh and their comparison with 467 globally reported sequences to understand the origin of viruses, possible patterns of mutations, availability of unique mutations, and their apparent impact on pathogenicity of the virus in victims of Bangladeshi population. Phylogenetic analyses indicates that in Bangladesh, SARS-CoV-2 viruses might arrived through infected travelers from European countries, and the GR clade was found as predominant in this region. We found 2602 mutations including 1602 missense mutations, 612 synonymous mutations, 36 insertions and deletions with 352 other mutations types. In line with the global trend, D614G mutation in spike glycoprotein was predominantly high (95.6%) in Bangladeshi isolates. Interestingly, we found the average number of mutations in ORF1ab, S, ORF3a, M and N of genomes, having nucleotide shift at G614 (n=459), were significantly higher (p[≤]0.001) than those having mutation at D614 (n=215). Previously reported frequent mutations such as P4715L, D614G, R203K, G204R and I300F were also prevalent in Bangladeshi isolates. Additionally, 87 unique amino acid changes were revealed and were categorized as originating from different cities of Bangladesh. The analyses would increase our understanding of variations in virus genomes circulating in Bangladesh and elsewhere and help develop novel therapeutic targets against SARS-CoV-2.


Sujets)
Infections à coronavirus , COVID-19
15.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.08.26.266825

Résumé

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic with millions of infected humans and hundreds of thousands of fatalities. As the novel disease - referred to as COVID-19 - unfolded, occasional anthropozoonotic infections of animals by owners or caretakers were reported in dogs, felid species and farmed mink. Further species were shown to be susceptible under experimental conditions. The extent of natural infections of animals, however, is still largely unknown. Serological methods will be useful tools for tracing SARS-CoV-2 infections in animals once test systems are validated for use in different species. Here, we developed an indirect multi-species ELISA based on the receptor-binding domain (RBD) of SARS-CoV-2. The newly established ELISA was validated using 59 sera of infected or vaccinated animals including ferrets, raccoon dogs, hamsters, rabbits, chickens, cattle and a cat, and a total of 220 antibody-negative sera of the same animal species. Overall, a diagnostic specificity of 100.0% and sensitivity of 98.31% was achieved, and the functionality with every species included in this study could be demonstrated. Hence, a versatile and reliable ELISA protocol was established that enables high-throughput antibody detection in a broad range of animal species, which may be used for outbreak investigations, to assess the seroprevalence in susceptible species or to screen for reservoir or intermediate hosts.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère , Infections
16.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.08.26.267997

Résumé

The heavy burden imposed by the COVID-19 pandemic on our society triggered the race towards the development of therapies or preventive strategies. Among these, antibodies and vaccines are particularly attractive because of their high specificity, low probability of drug-drug interaction, and potentially long-standing protective effects. While the threat at hand justifies the pace of research, the implementation of therapeutic strategies cannot be exempted from safety considerations. There are several potential adverse events reported after the vaccination or antibody therapy, but two are of utmost importance: antibody-dependent enhancement (ADE) and cytokine storm syndrome (CSS). On the other hand, the depletion or exhaustion of T-cells has been reported to be associated with worse prognosis in COVID-19 patients. This observation suggests a potential role of vaccines eliciting cellular immunity, which might simultaneously limit the risk of ADE and CSS. Such risk was proposed to be associated with FcR-induced activation of proinflammatory macrophages (M1) by Fu et al. 2020 and Iwasaki et al. 2020. All aspects of the newly developed vaccine (including the route of administration, delivery system, and adjuvant selection) may affect its effectiveness and safety. In this work we use a novel in silico approach (based on AI and bioinformatics methods) developed to support the design of epitope-based vaccines. We evaluated the capabilities of our method for predicting the immunogenicity of epitopes. Next, the results of our approach were compared with other vaccine-design strategies reported in the literature. The risk of immuno-toxicity was also assessed. The analysis of epitope conservation among other Coronaviridae was carried out in order to facilitate the selection of peptides shared across different SARS-CoV-2 strains and which might be conserved in emerging zootic coronavirus strains. Finally, the potential applicability of the selected epitopes for the development of a vaccine eliciting cellular immunity for COVID-19 was discussed, highlighting the benefits and challenges of such an approach.


Sujets)
COVID-19 , Syndrome d'immunodéficience acquise
17.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.08.21.20177857

Résumé

Understanding the coronavirus (CoV) antibody landscape in relation to disease and susceptibility is critical for modelling of steps in the next phase during the current covid-19 pandemic. In March 2020, during the first month of the epidemic in The Netherlands, we performed cross sectional studies at two time points amongst patients of the Erasmus Medical Centre in Rotterdam, to assess the presence of antibodies against seasonal human coronaviruses (OC43, 229E, NL63, HKU1), emerging zoonotic coronaviruses (SARS, MERS) and SARS-CoV-2 in nine different age groups. We observed minimal SARS-CoV-2 reactivity early March (0.7% of sera), increasing to 3.0%, four weeks later, suggesting probably undetected cases during this early phase of the epidemic. Antibody responses were mostly coronavirus species specific at young age, but possible cross-reactivity between human seasonal CoVs was observed with increasing age.


Sujets)
COVID-19
18.
biorxiv; 2020.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2020.08.24.264630

Résumé

Effective clinical intervention strategies for COVID-19 are urgently needed. Although several clinical trials have evaluated the use of convalescent plasma containing virus-neutralizing antibodies, the effectiveness has not been proven. We show that hamsters treated with a high dose of human convalescent plasma or a monoclonal antibody were protected against weight loss showing reduced pneumonia and pulmonary virus replication compared to control animals. However, a ten-fold lower dose of convalescent plasma showed no protective effect. Thus, variable and relatively low levels of virus neutralizing antibodies in convalescent plasma may limit their use for effective antiviral therapy, favouring concentrated, purified (monoclonal) antibodies.


Sujets)
COVID-19
19.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.08.18.20176743

Résumé

Background: Since the outbreak of COVID-19, many put their hopes in the rapid development of effective immunizations. For now patient isolation, physical distancing and good hygiene are the sole measures for prevention. Processed breast milk with antibodies against SaRS-CoV-2 may serve as additional protection. We aimed to determine the presence and neutralization capacity of antibodies against SaRS-CoV-2 in breastmilk of mothers who have recovered from COVID-19. Methods: This prospective case control study included lactating mothers, recovered from (suspected) COVID-19 and healthy controls. Serum and breastmilk was collected. To assess the presence of antibodies in breastmilk and serum, we used multiple complementary assays, namely ELISA with the SARS-CoV-2 spike protein, SARS-CoV-2 receptor binding domain (RBD) and with the SARS-CoV-2 nucleocapsid (N) protein for IgG and bridging ELISA with the SARS-CoV-2 RBD and N protein for total Ig. To assess the effect of pasteurization breastmilk was exposed to Holder Pasteurization and High Pressure Pasteurization. Results: Breastmilk contained antibodies against SARS-CoV-2 using any of the assays in 24 out of 29 (83%) proven cases, in six out of nine (67%) suspected cases and in none of the 13 controls. In vitro neutralization of SARS-CoV-2 clinical isolate virus strain was successful in a subset of serum (13%) and milk samples (26%). Although after pasteurization of the milk SARS-CoV-2 antibodies were detected with both methods of pasteurization, virus neutralizing capacity of those antibodies was only retained with the HPP approach. Conclusion: Breastmilk of mothers who recovered from COVID-19 contains significant amounts of IgA against SARS-CoV-2, both before and after pasteurization.


Sujets)
COVID-19 , Tumeurs du sein
20.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.06.17.20133793

Résumé

SARS-CoV-2 infections often cause only mild disease that may evoke relatively low antibody titers compared to patients admitted to hospitals. Generally, total antibody bridging assays combine good sensitivity with high selectivity. Therefore, we developed sensitive total antibody bridging assays for detection of SARS-CoV-2 antibodies to the receptor-binding domain (RBD) and nucleocapsid protein (NP), in addition to conventional isotype-specific assays. Antibody kinetics was assessed in PCR-confirmed hospitalized COVID-19 patients (n=41) and three populations of patients with COVID-19 symptoms not requiring hospital admission: PCR-confirmed convalescent plasmapheresis donors (n=182), PCR-confirmed hospital care workers (n=47), and a group of longitudinally sampled symptomatic individuals highly suspect of COVID-19 (n=14). In non-hospitalized patients, the antibody response to RBD is weaker but follows similar kinetics as has been observed in hospitalized patients. Across populations, the RBD bridging assay identified most patients correctly as seropositive. In 11/14 of the COVID-19-suspect cases, seroconversion in the RBD bridging assay could be demonstrated before day 12; NP antibodies emerged less consistently. Furthermore, we demonstrated the feasibility of finger prick sampling for antibody detection against SARS-CoV-2 using these assays. In conclusion, the developed bridging assays reliably detect SARS-CoV-2 antibodies in hospitalized and non-hospitalized patients, and are therefore well-suited to conduct seroprevalence studies.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche